

0040-4020(94)00560-5

Stereoselective Synthesis of β-Naltrexol, β-Naloxol, β-Naloxamine, β-Naltrexamine and Related Compounds by the Application of the Mitsunobu Reaction

¹Csaba Simon, ¹Sándor Hosztafi, ²Sándor Makleit*

¹Alkaloida Chemical Company Ltd., H-4440 Tiszavasvári, Hungary

²Department of Organic Chemistry, L. Kossuth University, P.O.Box 20, H-4010 Debrecen, Hungary

Abstract: As a continuation of our work, aimed at adopting the Mitsunobu reaction in the morphine series, a few representatives of dihydroisocodeines and dihydroisomorphines and their 14β-hydroxy analogues were prepared. p-Nitrobenzoic acid was used as carboxylic acid and the prepared esters were cleaved to obtain the title compounds. Using phthalimide as acidic component several new 6β-phthalimidodihydromorphine and dihydrocodeine derivatives and their 14β-hydroxy analogues have been synthesized. Cleavage of the phthalimido derivatives with hydrazine hydrate afforded the corresponding 6β-amino derivatives.

In our recent papers we have described the successful application of the Mitsunobu reaction¹ in the morphine-alkaloid series. During these studies epimerization of the 6α hydroxyl group of related compounds carrying a $\Delta^{7,8}$ double bond^{2,3}, as well as conversion of the hydroxyl function into a primary amino moiety^{4,5} have been investigated, and found that all of these reactions proceed with configurational inversion without allylic rearrangement. In addition, our results in case of derivatives substituted with bulky halogen atoms at position 14, have proved the literature findings that the Mitsunobu reaction with phthalimide is more sensitive to steric effects than those performed with carboxylic acids^{6,7}.

Preceding these studies most of the target compounds (C-6 β OH) were unknown, and in many cases either the yield or the stereoselectivity of the transformations were unsatisfactory⁸⁻¹⁶. Except for the N-allyl analogues the isomorphine derivatives, saturated in ring C, could be prepared by means of catalytic hydrogenation of isomorphine and isocodeine derivatives with unsaturated ring C prepared in our laboratory earlier². By elaborating an efficient procedure for the N-demethylation and N-alkylation^{3,17} of dihydroisocodeine and dihydroisomorphine, as well as of their 14 β -hydroxy analogues new completely stereoselective^{*} methods have been developed for the production of β -naltrexol (human metabolite of narcotic antagonist naltrexone) and β -naloxol. There is only one completely stereoselective synthesis known for the preparation of these compounds: the reduction of naloxone and naltrexone with formamidine sulfinic acid¹¹, but this method can not be applied in the case of other compounds^{12,13,18}.

Some of the target primary amines are known in the literature, and many of them have been prepared from the corresponding azide, obtained from sulphonate $esters^{19-21}$ and others were synthesized by Portoghese *et al.* by means of reductive amination of morphinan ketones²²⁻²⁵. The reported²⁴ synthesis of β -naloxamine is not completely stereoselective and only one procedure was reported for the completely stereoselective synthesis of β -naltrexamine²³, but its time consuming nature prompted us to examine a simple alternative approach.

The present paper deals with the synthesis of these and related compounds by means of treatment of the saturated ring C derivatives with p-nitrobenzoic acid and phthalimide respectively in the presence of triphenylphosphine and diethyl azodicarboxylate, and subsequent alkaline hydrolysis of the resulting esters to obtain the desired 6β epimers or cleavage of phthalimide derivatives with hydrazine hydrate to obtain the primary amine at 6β position. Investigation of such a reaction is theoretically also interesting, since the alcoholic hydroxyl is not of allylic character, and in case of the unsaturated and dihydro compounds the steric position of the hydroxyl function is <u>pseudo-equatorial</u> and <u>axial</u>, respectively.

When dihydrocodeine (1a) was allowed to react with benzoic acid in benzene no complete conversion was observed after several hours of reaction time and at elevated (reflux) temperature. Surprisingly in case of 14 β -hydroxydihydrocodeine (2a) the reaction is complete within one hour and the desired benzoate ester (5a) could be prepared. We can not explain the difference between the reactivity of dihydrocodeine and 14βhydroxydihydrocodeine. However, when p-nitrobenzoic acid was employed, the conversion completed in an hour at room temperature even in the case of dihydrocodeine. Similar results were published independently by Martin et al.²⁶ concerning the reactivity of benzoic acid and p-nitrobenzoic acid, using another substrates. Recently another paper has dealt with the effect of the acidic component on the Mitsunobu inversion²⁷. The different reactivity of benzoic acid and p-nitrobenzoic acid can be interpreted in the knowledge of the reaction mechanism: the pK value of p-nitrobenzoic acid is lower, and the equilibrium between the alkoxyphosphorane and the alkoxyphosphonium salt is shifted towards the latter, as shown by the related mechanistic studies by Jenkins et al.^{28,29}. In agreement with these results dihydrocodeine (1a) and N-demethyl-Nalkyldihydrocodeines (1b-d) could be readily converted with p-nitrobenzoic acid in benzene into the required p-nitrobenzoates 3a-d, whose alkaline hydrolysis gave rise to the dihydroisocodeines 5a-d. Boron tribromide mediated O-demethylation then afforded the corresponding dihydroisomorphine derivatives 6f-h. Dihydroisomorphine (6e) was prepared from dihydromorphine (1e $R_1=H$, $R_2=CH_3$) by using the known sequence (acetylation, epimerization, hydrolysis). The compounds obtained in this way were shown to be identical with those synthesized¹⁷ by N-demethylation of dihydroisocodeine and subsequent N-alkylation.

The 14 β -hydroxydihydroisocodeine derivatives <u>7a-d</u> were also obtained as described for the corresponding dihydroisocodeines. Although O-demethylation with boron tribromide could also be employed for these compounds, the related 14-hydroxydihydromorphine derivatives <u>2e-h</u> (R₁=H) were more easily accessible (through the corresponding ketones) than their 14-H analogues. Therefore the 3-O-acetyl derivatives (<u>2e-h</u>, R₁=Ac), prepared by the Welsh acetylation of the phenolic hydroxyl groups, were reacted with p-nitrobenzoic acid in the presence of triphenylphosphine and diethyl azodicarboxylate to obtain the p-nitrobenzoates (<u>4e-h</u>) of the 14-hydroxy-dihydroisomorphine derivatives. Due to their good water-solubility de-esterification of these latter compounds could be achieved with a catalytic amount of sodium methoxide in methanol, and the resulting alcohols <u>7e-h</u> were isolated in form of their chlorohydrates. These compounds were also prepared³ from the corresponding 14-hydroxy-dihydroisocodeines (<u>via</u> N-demethylation, N-alkylation and O-demethylation), and the physical data of these samples were found to be identical, in all respect with those synthesized by means of the Mitsonubu reaction.

When the dihydrocodeine <u>1a-d</u>, <u>2a-d</u> and 3-O-acetyldihydromorphine derivatives <u>1e-h</u>, and <u>2e-h</u> were treated with phthalimide in benzene in the presence of triphenylphosphine and diethyl azodicarboxylate the target phthalimido compounds <u>8a-h</u> and <u>9a-h</u> could be readily obtained. Temporary protection of the 14βhydroxy group was negligible, but to avoid undesired side-reaction (formation of alkyl phenyl ethers³⁰) the phenolic hydroxyl group was temporarily protected by the usually employed Welsh acetylation procedure³¹. Removal of the acetyl group with hydroxylamine hydrochloride or sodium carbonate in aqueous ethanol gave rise to the derivatives <u>10a-d</u> and <u>11a-d</u>, bearing free phenolic hydroxyl functions. Cleavage of the phthalimido moiety with hydrazine hydrate then allowed the isolation of the primary amines <u>12a-h</u> and <u>13a-h</u>.

The stereochemistry of C-6 was proved not only by the chemical identity of the compounds synthesized in an independent way, but also by their ¹H-NMR spectra. The coupling constants of $C_{5\beta}$ and $C_{6\alpha}$ -H $(J_{5\beta,6\alpha}\sim 6.5-8.5 \text{ Hz})$ verified the position of the substituent at C-6. The detailed analysis of the ¹H-NMR spectra of these compounds is published in the literature^{10,32-34}

The in vitro studies and pharmacological properties of 6β -epimers prepared by us was reported in part³⁵. The antagonist properties of β -naloxol and β -naltrexol are known in the literature^{11,36}.

The opiate β -naltrexamine is employed as an intermediate in the synthesis of the affinity label β -funaltrexamine³⁷, which is employed as a tool in opioid research³⁸.

Table I.
Melting points and yields for the prepared compounds

Compound	R,	Ra	x	Formula	M.w.	vield	mp
	1	2				(%)	(°C)
<u>3a</u>	CH ₃	CH ₁	Н	C25H26N2O6	450.48	90	164-165
<u>3b</u>	CH ₃	n-C ₃ H ₇	н	C27H30N2O6	478.53	60	149-151
<u>3c</u>	СН	CH ₂ CH=CH ₂	н	C ₂₇ H ₂₈ N ₂ O ₆	476.51	60	158-160
3d	CH ₃	СРМ	н	C28H30N2O6	490.54	48	188-189
<u>3e</u>	COCH ₃	СН3	н	C ₂₆ H ₂₆ N ₂ O ₇	478.49	40	250-253
<u>4a</u>	CH ₃	CH ₃	ОН	C25H26N2O7	466.48	79	218-220
<u>4b</u>	CH ₃	n-C ₃ H ₇	ОН	C27H30N2O7	494.53	57	189-191
<u>4c</u>	CH3	CH ₂ CH=CH ₂	OH	C27H28N2O7	492.51	61	170-172
<u>4d</u>	CH ₃	CPM	ОН	C ₂₈ H ₃₀ N ₂ O ₇	506.54	71	223-225
4c	COCH ₃	CH ₃	OH	C ₂₆ H ₂₆ N ₂ O ₈	494.49	39	215-217
<u>4f</u>	COCH ₃	n-C ₃ H ₇	ОН	C28H30N2O8	522.54	59	166-168
4g	COCH3	CH ₂ CH=CH ₂	ОН	C28H28N2O8	520.52	48	169-171
<u>4h</u>	COCH ₃	CPM	он	C ₂₉ H ₃₀ N ₂ O ₈	524.55	33	154-156
<u>5a</u>	CH3	CH ₃	H	C ₂₅ H ₂₇ NO ₅	421.48	43	180-182
<u>6a</u>	СН₃	CH ₃	H	C ₁₈ H ₂₃ NO ₃	301.38	57	204-205
<u>6b</u>	CH3	n-C ₃ H ₇	н	C ₂₀ H ₂₇ NO ₃	329.43	61	1 46-147
<u>6c</u>	СН3	CH ₂ CH=CH ₂	н	C ₂₀ H ₂₅ NO ₃	327.40	66	121-123
<u>6d</u>	CH3	CPM	Н	C ₂₁ H ₂₇ NO ₃	341.44	36	136-138
<u>6e</u>	Н	CH ₃	Н	C ₁₇ H ₂₁ NO ₃	287.35	96	224-226
<u>6f</u>	н	n-C ₃ H ₇	Н	C ₁₉ H ₂₅ NO ₃	315.40	53	104-106
<u>6</u> g	Н	CH ₂ CH=CH ₂	H	C ₁₉ H ₂₃ NO ₃	313.37	63	180-182
<u>6h</u>	н	CPM	н	C ₂₀ H ₂₅ NO ₃	327.40	51	286-290*
<u>7a</u>	CH3	CH ₃	OH	C ₁₈ H ₂₃ NO ₄	317.38	78	171-173
7b	CH3	n-C3H7	OH	C20H27NO4	345.43	37	146-148
7 <u>c</u>	CH ₃	CH ₂ CH=CH ₂	OH	C ₂₀ H ₂₅ NO ₄	343.40	86	112-113
7 <u>d</u>	CH3	CPM	OH	C21H27NO4	357.44	53	173-175
7 c	н	CH ₃	OH	C ₁₇ H ₂₁ NO ₄	303.35	63	251-252
7 f	н	n-C ₃ H ₇	ОН	C ₁₉ H ₂₅ NO ₄	331.40	82	263-265*
7g	н	CH ₂ CH=CH ₂	OH	$C_{19}H_{23}NO_4$	329.37	71	203*
7h	н	CPM	ОН	C ₂₀ H ₂₅ NO ₄	343.40	90	207*
<u>8a</u>	CH ₃	СН3	Η	C ₂₆ H ₂₆ N ₂ O ₄	430.49	49	190-193
<u>8b</u>	CH3	n-C ₃ H ₇	Н	C ₂₈ H ₃₀ N ₂ O ₄	458.54	74	212-214
<u>8c</u>	CH ₃	CH ₂ CH=CH ₂	Н	C ₂₈ H ₂₈ N ₂ O ₄	456.52	50	176-177
<u>8d</u>	CH3	CPM	н	C ₂₉ H ₃₀ N ₂ O ₄	470.53	68	219-221
<u>8e</u>	COCH ₃	СН3	H	$C_{27}H_{26}N_2O_5$	458.50	38	188-190
<u>8f</u>	COCH3	n-C ₃ H7	H	C ₂₉ H ₃₀ N ₂ O ₅	486.55	26	144-146
<u>8g</u>	COCH3	CH ₂ CH≕CH ₂	H	C ₂₉ H ₂₈ N ₂ O ₅	484.53	53	167-169
<u>8h</u>	COCH3	CPM	H	C ₃₀ H ₃₀ N ₂ O ₅	498.56	53	147-149
<u>9a</u>	CH3	СН3	ОН	C ₂₆ H ₂₆ N ₂ O ₅	446.49	90	115-117
9b	СН3	n-C ₃ H ₇	OH	C ₂₈ H ₃₀ N ₂ O ₅	474.54	73	234-236

Compound	R ₁	R ₂	x	Formula	M.w.	vield	Mp.
	•	-				, (%)	(°C)
<u>9c</u>	CH ₃	CH ₂ CH=CH ₂	OH	C28H28N2O5	472.52	76	207-208
<u>9d</u>	CH ₃	СРМ	OH	C ₂₉ H ₃₀ N ₂ O ₅	486.55	60	246-248
<u>9e</u>	COCH ₃	CH ₃	OH	C ₂₇ H ₂₆ N ₂ O ₆	474.50	46	217-219
<u>9f</u>	сосн3	n-C ₃ H ₇	ОН	C ₂₉ H ₃₀ N ₂ O ₆	502.55	42	206-208
<u>2g</u>	COCH ₃	CH ₂ CH=CH ₂	ОН	C ₂₉ H ₂₈ N ₂ O ₆	500.53	30	186-188
<u>9h</u>	COCH ₃	CPM	ОН	C30H30N2O6	514.56	33	212-215
<u>10a</u>	н	CH ₃	Н	$C_{25}H_{24}N_2O_4$	416.46	58	261-263
<u>10b</u>	н	n-C ₃ H ₇	Н	C27H28N2O4	444.51	25	213-215
<u>10c</u>	н	CH ₂ CH=CH ₂	н	C27H26N2O4	442.50	26	195-196
<u>10d</u>	н	CPM	Н	C ₂₈ H ₂₈ N ₂ O ₄	456.52	38	136-138
<u>11a</u>	н	CH ₃	ОН	$C_{25}H_{24}N_2O_5$	432.64	62	305-307
115	н	n-C ₃ H ₇	OH	C ₂₇ H ₂₈ N ₂ O ₅	460.51	70	279-281
<u>11c</u>	н	CH ₂ CH=CH ₂	OH	C ₂₇ H ₂₆ N ₂ O ₅	458.50	61	250-252
<u>11d</u>	Н	СРМ	OH	C28H28N2O5	474.54	58	275-277
<u>12a</u>	CH ₃	CH3	Н	$C_{18}H_{24}N_2O_2$	300.39	35	140-142
<u>12b</u>	CH ₃	n-C ₃ H ₇	H ·	C ₂₀ H ₂₈ N ₂ O ₂	328.44	70	oil
<u>12c</u>	CH ₃	CH ₂ CH=CH ₂	Н	C ₂₀ H ₂₆ N ₂ O2	326.43	98	oil
<u>12d</u>	CH ₃	СРМ	Н	C ₂₁ H ₂₈ N ₂ O ₂	340.46	98	109-110
<u>12e</u>	н	CH ₃	Н	C ₁₇ H ₂₂ N ₂ O ₂	286.37	93	269-271
<u>12f</u>	н	n-C ₃ H ₇	H	C ₁₉ H ₂₆ N ₂ O ₂	314.42	88	106-108
<u>12g</u>	н	CH ₂ CH=CH ₂	Н	$C_{19}H_{24}N_2O_2$	312.40	66	102-103
<u>12h</u>	н	СРМ	H	$C_{20}H_{26}N_2O_2$	326.43	78	216-218
<u>13a</u>	CH3	CH ₃	OH	C ₁₈ H ₂₄ N ₂ O ₃	316.39	51	152-154
<u>13b</u>	CH3	n-C ₃ H ₇	OH	$C_{20}H_{28}N_2O_3$	344.44	70	127-129
<u>13c</u>	CH ₃	CH ₂ CH=CH ₂	OH	$C_{20}H_{26}N_2O_3$	342.43	90	145-147
<u>13d</u>	СН₃	СРМ	ОН	$C_{21}H_{28}N_2O_3$	356.46	90	125-126
<u>13e</u>	н	CH ₃	OH	$C_{17}H_{22}N_2O_3$	302.37	90	260*
<u>13f</u>	н	n-C ₃ H ₇	ОН	$C_{19}H_{26}N_2O_3$	330.42	75	191-193
<u>13g</u>	н	CH ₂ CH=CH ₂	OH	C ₁₉ H ₂₄ N ₂ O ₃	328.40	44	295-302*
<u>13h</u>	Н	CPM	ОН	C20H26N2O3	342.43	61	277-279*

Table I continued

All compounds gave satisfactory elementary analytical data.

* as hydrochloride salt

Melting points of the known compounds:

<u>6a</u>: 201¹⁴; <u>6e</u>:224-225¹⁵; <u>7a</u>: 166-167¹⁶; <u>7d</u>: 172-173¹³; <u>7e</u>: 248-250(HCl)¹²; <u>7g</u>: 205-207(HCl)¹¹; <u>7h</u>: 205-208(HCl)¹¹

<u>12a</u>: 139¹⁹; <u>12e</u>: 265²⁰; <u>12h</u>: 216-217²²; <u>13a</u>: 147-148²¹;

<u>13e</u>*: 260²³; <u>13g</u>*: >270²³; <u>13h</u>*: 270²³

Representative ¹H-NMR and MS data for compounds (2-4)

Cmpd.	¹ H-NMR δ (ppm) CDCl ₃ (* DMSO-d ₆)	MS (%)
<u>3a</u>	2.4(s, 3H, NMe); 3.8(s, 3H, OMe); 4.7(d, 1H, C _{5β} H); 4.9(m, 1H, C _{6α} H);	450[M ⁺](10)
	6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	
<u>3b</u>	0.9(t, 3H, propylMe); 3.8(s, 3H, OMe); 4.7(d, 1H, C _{5β} H); 4.9(m, 1H, C _{6α} H);	478[M ⁺](10)
	6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	449(90)
<u>3c</u>	3.8(s, 3H, OMe); 4.7(d, 1H, C _{5β} H); 4.9(m, 1H, C _{6α} H); 5.2-5.3(m, 2H, allylCH ₂); 5.9(m,	476[M ⁺](30)
	1H, allyICH); 6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	446(20)
<u>3d</u>	0.1-0.9(m, 5H, cyclopropylH); 3.8(s, 3H, OMe); 4.7(d, 1H, C _{5β} H); 4.9(m, 1H, C _{6α} H);	490[M ⁺](20)
	6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	449(15)
<u>3e</u>	2.2(s, 3H, OCOCH ₃); 2.4(s, 3H, NMe); 4.7(d, 1H, C _{5B} H); 4.8(m, 1H, C _{6a} H);	478[M ⁺](10)
	6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	436(15)
<u>4a</u>	2.4(s, 3H, NMe); 3.8(s, 3H, OMe); 4.8(d, 1H, C _{5β} H); 5.0(m, 1H, C _{6α} H);	466[M ⁺](30)
	6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	
<u>4b</u>	0.9(t, 3H, propylMe); 3.8(s, 3H, OMe); 4.8(d, 1H, C _{5β} H); 5.0(m, 1H, C _{6α} H);	494[M ⁺](10)
	6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	465(20)
<u>4c</u>	3.8(s, 3H, OMe), 4.8(d, 1H, C _{5β} H); 5.0(m, 1H, C _{6α} H); 5.2(m, 2H, allylCH ₂);	492[M ⁺](10)
	5.8(m, 1H, allyICH); 6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	
<u>4d</u>	$0.1-0.9(m, 5H, cyclopropylH); 3.8(s, 3H, OMe); 4.8(d, 1H, C_{5\beta}H); 5.0(m, 1H, C_{6\alpha}H);$	506[M ⁺](35)
	6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	465(15)
<u>4e</u>	2.2(s, 3H, OCOCH ₃); 2.4(s, 3H, NMe); 4.8-5.0(m, 2H, C _{5β} H and C _{6α} H);	494[M ⁺](35)
	6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	452(40)
<u>4f</u>	0.9(t, 3H, propylMe); 2.2(s, 3H, OCOCH ₃); 4.8-5.0(m, 2H, C _{5β} H and C _{6α} H);	522[M ⁺](10)
	6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	493(30)
<u>4g</u>	2.2(s, 3H, OCOCH ₃); 4.8-5.0(m, 2H, C _{5β} H and C _{6α} H); 5.2(m, 2H, allylCH ₂);	520[M ⁺](10)
	5.8(m, 1H, allylCH); 6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	
<u>4h</u>	0.1-0.9(m, 5H, cyclopropylH); 2.2(s, 3H, OCOCH ₃); 4.8-5.0(m, 2H, C _{5β} H and C _{6α} H);	534[M ⁺](10)
	6.7(ABq, 2H, C ₁ ,C ₂ H); 8.3(m, 4H, OCOC ₆ H ₄ NO ₂)	492(10)
<u>5a</u>	2.4(s, 3H, NMe); 3.8(s, 3H, OMe); 4.8(d, 1H, C _{5β} H); 4.9(m, 1H, C _{6α} H);	421[M ⁺](40)
	6.7(ABq, 2H, C ₁ ,C ₂ H); 7.5(m, 3H) and 8.0(m, 2H, OCOC ₆ H ₅)	
<u>6a</u>	2.4(s, 3H, NMe); 3.9(s, 3H, OMe); 4.4(d, 1H, C _{5β} H); 6.7(ABq, 2H, C ₁ ,C ₂ H)	301[M ⁺](100)
		286(20)
<u>6b</u>	0.9(t, 3H, propylMe); 3.9(s, 3H, OMe); 4.4(d, 1H, C5βH); 6.7(ABq, 2H, C1,C2H)	329[M ⁺](10)
		300(100)
<u>6c</u>	3.9(s, 3H, OMe); 4.4(d, 1H, C _{5β} H); 5.3(m, 2H, allylCH ₂); 5.9(m, 1H, allylCH);	327[M ⁺](100)
	6.7(ABq, 2H, C ₁ ,C ₂ H);	
<u>6d</u>	0.1-1.1(m, 5H, cyclopropylH); 3.9(s, 3H, OMe); 4.4(d, 1H, C ₅₈ H);	341[M ⁺](100)
	6.7(ABq, 2H, C ₁ ,C ₂ H)	300(52)
<u>6e</u>	2.4(s, 3H, NMe); 4.4(d, 1H, $C_{5\beta}$ H); 6.7(ABq, 2H, C_1, C_2 H)	287[M ⁺](70)
		2160 (1/12)
<u>6f</u>	0.9(t, 3H, propyIMe); 4.4(d, 1H, $C_{5\beta}H$); 6. /(ABq, 2H, C_1, C_2H)	315[M ⁺](12)
-	A MALENT OF THE COLOR AND AND A COLOR AND A COLOR OF COLOR	200(93) 212[N/+](100)
<u>6g</u>	4.4(a, 1H, U _{5β} H); 5.3(m, 2H, allyiCH ₂); 5.8(m, 1H, allyiCH); 6.7(ABQ, 2H, U ₁ , U ₂ H);	286(10)
a	0.2.0.0(m Ell avalanzamille) 4.4(d 11 C II) 6.7(ADa 21 C C II)	200(10) 327[M+1)60)
on	0.2-0.2(11, 311, cyclopropying, +.+(4, 111, CSBII), 0./(r.b4, 211, CJ, C211)	286(30)

	Table II continued	
Cmpd.	¹ H-NMR δ (ppm) CDCl ₃ (* DMSO-d ₆)	MS (%)
<u>7a</u>	2.4(s, 3H, NMe); 3.6(m, 1H, C _{6a} H); 3.9(s, 3H, OMe); 4.5(d, 1H, C ₅₈ H);	317[M ⁺]
	6.7(ABq, 2H, C ₁ ,C ₂ H)	
7b	0.9(t, 3H, propylMe); 3.6(m, 1H, C _{6α} H); 3.9(s, 3H, OMe); 4.5(d, 1H, C _{5β} H);	345[M ⁺](0)
	6.7(ABq, 2H, C ₁ ,C ₂ H)	361(100)
<u>7c</u>	3.6(m, 1H, C _{6α} H); 3.9(s, 3H, OMe); 4.5(d, 1H, C _{5β} H); 5.3(m, 2H, allylCH ₂);	343[M ⁺](10)
	5.8(m, 1H, allyiCH); 6.7(ABq, 2H, C ₁ ,C ₂ H);	
2 d	0.1-0.9(m, 5H, cyclopropylH); 3.6(m, 1H, C _{6α} H); 3.9(s, 3H, OMe);	357[M ⁺]
	4.5(d, 1H, $C_{5\beta}H$); 6.7(ABq, 2H, C_1, C_2H)	
<u>7e</u> *	2.4(s, 3H, NMe); 4.2(m, 1H, $C_{6\alpha}$ H); 5.0(d, 1H, $C_{5\beta}$ H); 6.7(ABq, 2H, C_1, C_2 H)	303[M ⁺](65)
7 f	0.9(t, 3H, propylMe); 3.6(m, 1H, C _{6α} H); 4.5(d, 1H, C _{5β} H); 6.7(ABq, 2H, C ₁ ,C ₂ H)	331[M ⁺](10)
-		302(100)
<u>1g</u>	3.6(m, 1H, $C_{6\alpha}$ H); 4.6(d, 1H, $C_{5\beta}$ H); 5.1-5.3(m, 2H, allyiCH ₂);	32 9[M+] (10)
-	5.7-5.9(m, 1H, allyICH); 6.7(ABq, 2H, C_1, C_2 H);	
70	$C_{5\beta}$ (A.D., 5H, CyclopropylH); 3.0(m, 1H, $C_{6\alpha}$ H); 4.0(d, 1H, $C_{5\beta}$ H);	343[M ⁺](25)
8.	$\frac{1}{2} \frac{1}{2} \frac{1}$	302(10)
24	$2.4(a, 5n, 10mc), 5.8(a, 5n, 0mc), 4.9(m, 1n, C_{6a}n), 5.2(a, 1n, C_{5\beta}n),$	43U[M"](45)
8h	$0.7(ABq, 2H, C_{1,2H}), 7.6(H, 4H, FH)$	373(13)
ΩV	$6.7(ABa 2H C_{1}H) + 7.8(m AH Pht)$	438(M1)(15) 430(100)
8c	3.8(s. 3H. OMe): 4.0(m. 1H. C. H): $5.2(m. 3H. C. H and allylCH.):$	429(100) 456[M+1/80)
	5.9(m, 1H, allv/CH)6.7(ABa, 2H, C, aH); 7.8(m, 4H, Pht)	Applied Man)
8d	0.1-0.9(m. 5H, cyclopropylH): 3.8(s. 3H, OMe): 4.0(m. 1H, Cr. H):	470(M+1(60)
	5.2(d, 1H, C _{co} H); 6.7(ABq, 2H, C ₁ , 2H); 7.8(m, 4H, Pht)	() () () () () () () () () () () () () (
<u>8e</u>	2.2(s, 3H, OCOCH ₂); 2.4(s, 3H, NMe); 4.0(m, 1H, C_{c_m} H); 5.2(d, 1H, C_{c_0} H);	458[M+1(15)
	6.7(ABq, 2H, C _{1.2} H); 7.8(m, 4H, Pht)	416(20)
<u>8f</u>	0.9(t, 3H, propylMe); 2.2(s, 3H, OCOCH ₃); 4.0(m, 1H, C _{6n} H);	457[M ⁺](10)
	5.2(d, 1H, C ₅₈ H); 6.7(ABq, 2H, C _{1.2} H); 7.8(m, 4H, Pht)	
<u>8g</u>	2.2(s, 3H, OCOCH ₃); 4.0(m, 1H, C _{6x} H); 5.2(m, 3H, C ₅₈ H and allyICH ₂);	484[M ⁺](40)
	5.9(m, 1H, allylCH)6.7(ABq, 2H, C _{1,2} H); 7.8(m, 4H, Pht)	442(40)
<u>8h</u>	0.1-0.9(m, 5H, cyclopropylH); 2.2(s, 3H, OCOCH ₃); 4.0(m, 1H, C _{6a} H);	498[M ⁺](100)
	5.2(d, 1H, C _{5β} H); 6.7(ABq, 2H, C _{1,2} H); 7.8(m, 4H, Pht)	456(50)
<u>9a</u>	2.4(s, 3H, NMe); 3.8(s, 3H, OMe); 4.1(m, 1H, $C_{6\alpha}$ H); 5.3(d, 1H, $C_{5\beta}$ H);	446[M ⁺](70)
	6.7(ABq, 2H, C _{1,2} H); 7.8(m, 4H, Pht)	
<u>9b</u>	0.9(t, 3H, propylMe); 3.8(s, 3H, OMe); 4.1(m, 1H, C _{6α} H); 5.3(d, 1H, C _{5β} H);	474[M ⁺](15)
	6.7(ABq, 2H, C _{1,2} H); 7.8(m, 4H, Pht)	445(100)
9c	3.8(s, 3H, OMe); 4.1(m, 1H, $C_{6\alpha}$ H); 5.3(m, 3H, $C_{5\beta}$ H and allylCH ₂);	472[M ⁺](15)
	5.8(m, 1H, allyICH); 6.7(ABq, 2H, C _{1,2} H); 7.8(m, 4H, Pht)	
20	0.1-0.9(m, 5H, cyclopropyiH); 3.8(s, 3H, OMe); 4.1(m, 1H, $C_{6\alpha}$ H);	486[M ⁺](25)
0-	5.3(a_1 H, C ₅₈ H); 6.7(ABQ, 2H, C _{1,2} H); 7.8(m , 4H, Pmt)	1010 1-1100
26	2.2(s, 5H, OUDOH3); 2.4(s, 5H, NMC); 4.0(m, 1H, $C_{6\alpha}$ H); 5.5(d, 1H, $C_{5\beta}$ H);	4/4[M·](30)
Of	$0.7(1320), 413, 0_{1,2}(1), 7.0(10, 411, 10)$ 0.9(1.3)H. propyl Me): 2.2(2.3)H. OCOCH-3: 4.0(m. 1)H. C. H.	432(33) 502DA+1(30)
2	5 3(d 1H CH): 6 7(ABa 2H C. H): 7 8(m 4H Pht)	472(50)
9 0	2.2(s. 3H. OCOCHa): 4.0(m. 1H. C. H): 5.3(m. 3H. C. H and allviCHa):	500FM ⁺ 1(10)
4	5.8(m. 1H. allv/CH): 6.7(ABa, 2H. C ₁ , H ; 7.8(m. 4H. Pht)	458(10)

Table II continued

Cmpd.	¹ H-NMR δ (ppm) CDCl ₃ (* DMSO-d ₆)	MS (%)
<u>9h</u>	0.1-0.9(m, 5H, cyclopropylH); 2.2(s, 3H, OCOCH ₃); 4.0(m, 1H, C _{6a} H);	514[M ⁺](10)
	5.3(d, 1H, C ₅₈ H); 6.7(ABq, 2H, C _{1.2} H); 7.8(m, 4H, Pht)	472(10)
<u>10a</u>	2.4(s, 3H, NMe); 4.0(m, 1H, C _{6a} H); 5.1(d, 1H, C ₅₈ H); 6.7(ABq, 2H, C _{1,2} H);	416[M ⁺](100)
	7.8(m, 4H, Pht)	359(20)
10b	0.9(t, 3H, propylMe); 4.0(m, 1H, C _{6a} H); 5.1(d, 1H, C ₅₈ H);	444[M ⁺](10)
	6.7(ABq, 2H, C _{1,2} H); 7.8(m, 4H, Pht)	415(100)
<u>10c</u>	4.0(m, 1H, C _{6a} H); 5.2(m, 3H, C ₅₈ H and allylCH ₂);	442[M ⁺](100)
	5.9(m, 1H, allylCH)6.7(ABq, 2H, C _{1,2} H); 7.8(m, 4H, Pht)	415(15)
<u>10d</u>	0.1-0.9(m, 5H, cyclopropylH); 4.0(m, 1H, C _{6α} H); 5.1(d, 1H, C _{5β} H);	456[M ⁺](90)
	6.7(ABq, 2H, C _{1,2} H); 7.8(m, 4H, Pht)	
11a	2.3(s, 3H, NMe); 3.9(m, 1H, C _{6n} H); 5.1(d, 1H, C ₅₈ H);	432[M ⁺](65)
	6.7(ABq, 2H, C ₁₂ H); 7.8(m, 4H, Pht)	357(25)
11b	0.9(t, 3H, propylMe); 4.0(m, 1H, C _{6a} H)5.2(d, 1H, C ₅₈ H);	460[M ⁺](15)
	6.7(ABq, 2H, C _{1.2} H); 7.8(m, 4H, Pht)	431(100)
11c	4.0(m, 1H, C60H); 5.2(m, 3H, C58H and allylCH2);	458[M ⁺](10)
	5.8(m, 1H, allyiCH)6.7(ABq, 2H, C _{1.2} H); 7.8(m, 4H, Pht)	
11d	0.1-0.9(m, 5H, cyclopropylH); 4.0(m, 1H, C _{6r} H); 5.2(d, 1H, C ₅₈ H);	472[M ⁺](20)
	6.7(ABq, 2H, C _{1.2} H); 7.8(m, 4H, Pht)	
<u>12a</u>	2,4(s, 3H, NMe); 3,9(s, 3H, OMe); 4.2(d, 1H, C _{6x} H); 6.7(ABq, 2H, C _{1,2} H);	300[M ⁺](100)
125	0.9(t, 3H, propyiMe); 3.9(s, 3H, OMe); 4.2(d, 1H, C _{6a} H);	328[M ⁺](15)
	6,7(ABq, 2H, C _{1,2} H);	
<u>12c</u>	3.9(s, 3H, OMe); 4.2(d, 1H, C _{6α} H); 5.2(m, 2H, allyl CH ₂); 5.9(m, 1H, allylCH); 6.7(ABq, 2HC _{1.2} H)	326[M ⁺](10)
12d	0.1-0.9(m, 5H, cyclopropylH); 3.9(s, 3H, OMe); 4.2(d, 1H, C _{6a} H);	340[M ⁺](85)
	6.7(ABq, 2H, C _{1,2} H);	322(20)
12c	2.3(s, 3H, NMe); 4.4(d, 1H, C ₆₀ H); 6.7(ABq, 2H, C _{1,2} H);	286[M ⁺](100)
<u>12f</u>	0.9(t, 3H, propylMe); 4.1(d, 1H, C _{6α} H); 6.7(ABq, 2H, C _{1,2} H);	312[M ⁺](25)
<u>12g</u>	4.1(d, 1H, C _{6a} H); 5.2(m, 2H, allyl CH ₂); 5.9(m, 1H, allylCH);	314[M ⁺](10)
	6.7(ABq, 2HC _{1,2} H)	285(20)
<u>12h</u>	0.1-0.9(m, 5H, cyclopropyiH); 4.1(d, 1H, C _{6α} H); 6.7(ABq, 2H, C _{1,2} H);	326[M ⁺](100)
<u>13a</u>	2.3(s, 3H, NMe); 3.8(s, 3H, OMe); 4.1(d, 1H, C _{6a} H); 6.7(ABq, 2H, C ₁ ,C ₂ H);	316[M ⁺](100)
<u>13b</u>	0.9(t, 3H, propylH); 3.8(s, 3H, OMe); 4.3(d, 1H, C _{6a} H);	344[M ⁺](25)
	6.7(ABq, 2H, C ₁ ,C ₂ H);	315(100)
13c	3.9(s, 3H, OMe); 4.4(d, 1H, C _{6a} H); 5.2(m, 2H, allyl CH ₂); 5.9(m, 1H, allylCH);	342[M ⁺](25)
	6.7(ABq, 2HC _{1,2} H)	
13d	0.1-0.9(m, 5H, cyclopropylH); 3.8(s, 3H, OMe); 4.3(d, 1H, C _{6a} H);	356[M ⁺](25)
	6.7(ABq, 2H, C ₁ ,C ₂ H);	
<u>13e</u>	2.3(s, 3H, NMe); 4.1(d, 1H, C_{6a} H); 6.7(ABq, 2H, C_1, C_2 H);	302[M ⁺](100)
13f	0.9(t, 3H, propylH); 4.3(d, 1H, C _{6a} H); 6.7(ABq, 2H, C ₁ ,C ₂ H);	330[M ⁺](20)
		301(70)
<u>13g</u>	4.3(d, 1H, C _{6α} H); 5.2(m, 2H, allyl CH ₂); 5.9(m, 1H, allylCH); 6.7(ABq, 2HC _{1,2} H)	32 8[M⁺](40)
13h	0.1-0.9(m, 5H, cyclopropylH); 4.3(d, 1H, C ₆₀ H); 6.7(ABq, 2H, C ₁ ,C ₂ H);	342[M ⁺](30)

Experimental

Melting points were determined with an "Electrotermal" digital instrument (Type 8103) in open capillary tubes and the data are uncorrected. Thin layer chromatography was performed on precoated Merck 5554 Kieselgel 60 F254 foils using 8:2 benzene:methanol, 9:1 chloroform:methanol, 5:4:1 chloroform:acetone:diethylamine and 8:2:1 ethyl acetate:methanol:25% ammonia solution developing systems. The spots were visualised by Dragendorff-reagent. For column chromatography Kieselgel 60 H absorbent and 9:1 benzene-methanol eluent were applied. 1H-NMR spectra were recorded with a Varian-Gemini 200 instrument and mass spectra were obtained with a VG-TRIO-2 spectrometer.

Preparation of Compounds 3a-e. 4a-h. 5a (Mitsunobu-esterification procedure)

Compound (<u>1a-e</u> or <u>2a-h</u>) (10 mmol), triphenylphosphine (5.24 g, 20mmol) and p-nitrobenzoic acid (3.34 g, 20 mmol) or benzoic acid (2,24 g, 20 mmol) were dissolved in anhydrous benzene (100 ml) and diethyl azodicarboxylate (3.4 ml, 20 mmol) dissolved in anhydrous benzene(10 ml) was dropwise added over a period of 5-10 min. The reaction mixture was stirred for another 1 h and the precipitate was filtered off. The solvent was evaporated, the syrupy residue treated with D-tartaric acid (2.0-2.5 g) dissolved in 100 ml of water and extracted with ether. The aqueous phase was alkalized with 10% ammonium hydroxide and extracted with chloroform. The chloroform solution was washed with brine, then with water, dried over sodium sulfate, the solvent was evaporated, and the residue was crystallized from ethanol.

General Procedure for the Hydrolysis of p-nitrobenzoic acid esters

A mixture of compound (<u>3a-e</u> or <u>4a-h</u>) (1.0 g), 10% aqueous KOH solution (10ml), and ethanol (10ml) was refluxed for 10 min, then the pH of the mixture was adjusted to 8-9 with 10% ammonium hydroxide and extracted with chloroform. The organic phase was washed with brine, then with water, dried over sodium sulfate, the solvent was evaporated and the residue was crystallized to afford compounds (<u>6a-e, 7a-h</u>).

O-Demethylation with Boron Tribromide

To a cold (0 °C) solution of boron tribromide (1.2 ml, 12mmol) in dry chloroform (50 ml) a solution of the codeine derivative (5.8 mmol) in chloroform (30 ml) was dropwise added over a period of 20 min with stirring and under nitrogen atmosphere. Stirring was continued for 60 min at 0-5 °C and then the mixture was poured onto ice (100 g) and the pH of the aqueous layer was adjusted to 8.5-9.0 by the addition of ammonium hydroxide. The chloroform layer was separated and the aqueous phase was extracted with chloroform (3x20 ml). The combined organic extract was washed with aq. sodium chloride, dried and concentrated.

Cleavage of esters of 14-hydroxyisomorphine derivatives

A solution of the ester (<u>4e-h</u>) in methanol (15 ml) was treated with a 0.1% solution of sodium methoxide in methanol under reflux temperature for 30 min. The solvent was removed under diminished pressure and the product was prepared as the chlorohydrate.

General procedure for the preparation of the 6β-phthalimido (8a-h and 9a-h) derivatives

Compound (<u>la-h</u> or <u>2a-h</u>) (10 mmol), triphenylphosphine (5.24 g, 20 mmol) and phthalimide (2.94 g, 20 mmol) were dissolved in anhydrous benzene (100 ml) and diethyl azodicarboxylate (3.4 ml, 20 mmol) dissolved in anhydrous benzene(10 ml) was dropwise added over a period of 5-10 min. The reaction mixture was stirred for another 1 h and the precipitate was filtered off. The solvent was evaporated, the syrupy residue treated with D-tartaric acid (2.0-2.5 g) dissolved in 100 ml of water and extracted with ether. The aqueous

phase was alkalized with 10% ammonium hydroxide and extracted with chloroform. The chloroform solution was washed with brine, then with water, dried over sodium sulphate, the solvent was evaporated, and the residue was crystallized from ethanol.

General procedure for splitting of the phenol esters (preparation of (10a-d and 11a-d)

To a solution of the 3-O-acetyl derivative (1.0 g) in ethanol (45 ml) an aqueous solution (5 ml) of hydroxylamine hydrochloride (0.15 g) was added and the mixture was stirred at 50 °C for 10 min. After completion of the reaction, ethanol was distilled off in vacuo, the residue was taken up with water, made alkaline with a dilute aqueous solution of ammonium hydroxide or sodium carbonate and extracted with chloroform. The organic layer was washed with aqueous solution chloride and water, dried over sodium sulphate and evaporated. The residual product was crystallized from ethanol.

General procedure for the preparation of 6β-amino derivatives (12a-h and 13a-h)

A solution of the 6β -phthalimido derivative (1.0 g) in ethanol (15ml) was treated with 98% hydrazine hydrate (0.4ml, 8 mmol). After completion of the reaction the hot mixture was poured into 30 ml of 1.5 N acetic acid and the precipitated ftalazin-1,4-dione was filtered off. The filtrate was neutralized with 10% aqueous solution of ammonium hydroxide and extracted with chloroform or (in the case of morphine derivatives) with a 2:1 chloroform:isopropanol mixture. The organic layer was washed with brine and water, dried over sodium sulfate and concentrated under reduced pressure. The residue was crystallized or purified by column chromatography.

Acknowledgements

This work was financially supported, in part, by a grant (OTKA I/3 1722) obtained from the National Science Foundation (Hungary).

The authors thank Mrs. Zoltán Kovács and Mrs. Sándor Kolozsi for their conscientious technical assistance.

REFERENCES AND NOTES

- * For definition of stereoselectivity see: Ault, A. J. Chem. Educ. 1977, 54, 614-615.
- 1. Mitsunobu, O. Synthesis 1981, 1-28.
- 2. Simon, C.; Hosztafi, S.; Makleit, S. Synth. Commun. 1991, 21, 407-412.
- 3. Hosztafi, S.; Simon, C.; Makleit, S. Heterocycles 1993, 36, 1509-1519.
- 4. Simon, C.; Hosztafi, S.; Makleit, S. Synth. Commun. 1992, 22, 913-921.
- 5. Simon, C.; Hosztafi, S.; Makleit, S. Heterocycles accepted for publication
- 6. Simon, C.; Hosztafi, S.; Makleit, S. Magy. Kem. Foly. 1992, 98, 15-17.
- 7. Simon, C.; Hosztafi, S.; Makleit, S. Tetrahedron Lett. 1993, 34, 6475-6478.
- 8. Lutz, R. E.; Small, L. F. J. Org. Chem. 1939, 4, 220-233.
- 9. Seki, I. Ann. Sankyo Res. Lab. 1965, 17, 1-34.
- 10. Hahn, E. F.; Fishman, J. J. Org. Chem. 1975, 40, 31-34.
- 11. Chatterjie, N.; Inturrisi, C. E.; Dayton, H. B.; Blumberg, H. J. Med. Chem. 1975, 18, 490-492.
- 12. Chatterjie, N.; Umans, J. G.; Inturrisi, C. E. J. Org. Chem. 1976, 41, 3524-3525.

- Brine, G. A.; Boldt, K. G.; Coleman, M. L.; Bradley, D. J.; Caroll, F. I. J. Org. Chem. 1978, 43, 1555-1557.
- 14. Makleit, S.; Bognár, R. Acta Chim. Acad. Sci. Hung. 1969, 59, 387-388.
- 15. Makleit, S.; Bognár, R. Acta Chim. Acad. Sci. Hung. 1970, 64, 281-283.
- 16. Currie, A. C.; Gillon, J.; Newbold, G. T.; Spring, F. S. J. Chem. Soc. 1960, 773-781.
- 17. Hosztafi, S.; Simon, C.; Makleit, S. Synth. Commun. 1992, 22, 1673-1682.
- Chatterjie, N.; Umans, J. G.; Inturrisi, C. E.; Chen, W. T. C.; Clarke, D. D.; Bhatnager, S. P.; Weiss, U. J. Org. Chem. 1978, 43, 1003-1005.
- 19. Bognár, R.; Makleit, S. Acta Chim. Acad. Sci. Hung. 1969, 59, 373-378.
- 20. Bognár, R.; Makleit, S.; Mile, T. Acta Chim. Acad. Sci. Hung. 1969, 59, 379-385.
- Makleit, S.; Radics, L.; Bognár, R.; Mile, T.; Oláh, É. Acta Chim. (Budapest), 1972, 74, 99-113.
- 22. Schoenecker, J. W.; Takemori, A. E.; Portoghese, P. S. J. Med. Chem. 1987, 30, 1040-1044.
- 23. Sayre, L. M.; Portoghese, P. S. J. Org. Chem. 1980, 45, 3366-3368.
- Jiang, J. B.; Hanson, R. N.; Portoghese, P. S.; Takemori, A. E. J. Med. Chem. 1977, 20, 1100-1102.
- 25. Mohamed, M. S.; Portoghese, P. S. J. Org. Chem. 1986, 51, 105-106.
- 26. Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017-3020.
- 27. Dodge, J. A.; Trujillo, J. I.; Presnell, M. J. Org. Chem. 1994, 59, 234-236.
- 28. Camp, D.; Jenkins, I. D. J. Org. Chem. 1989, 54, 3045-3049.
- 29. Camp, D.; Jenkins, I. D. J. Org. Chem. 1989, 54, 3049-3054.
- Manhas, M. S.; Hoffman, W. H.; Lal, B.; Bose, A. K. J. Chem. Soc. Perkin Trans. 1. 1975, 461-463.
- 31. Welsh, L. A. J. Org. Chem. 1954, 19, 1409-1415.
- 32. Szilágyi, L.; Makleit, S.; Hosztafi, S.; Simon, C. Magn. Reson. Chem. 1992, 30, 552-557.
- Brine, G. A.; Prakash, D.; Hart, C. K.; Kotchmar, D. J.; Moreland, C. G.; Caroll, F. I. J. Org. Chem. 1976, 41, 3445-3448.
- 34. Crouch, R. C.; Bhatia, A. V.; Lever Jr. O. W. J. Het. Chem. 1990, 27, 385-389.
- Fürst, S.; Friedmann, T.; Tóth, Z.; Hosztafi, S.; Simon, C.; Makleit, S. Arch. int. Pharmacodyn. accepted for publication
- Rónai, A. Z.; Földes, F. F.; Hahn, E. F.; Fishman, J. J. Pharmacol. Exp. Ther. 1977, 200, 496-500.
- Portoghese, P. S.; Larson, D. L.; Sayre, L. M.; Fries, D. S.; Takemori, A. E. J. Med. Chem. 1980, 23, 233-234.
- 38. Takemori, A. E.; Portoghese, P. S. Annu. Rev. Pharmacol. Tox. 1985, 25, 193-223.

(Received in UK 18 April 1994; revised 23 June 1994; accepted 24 June 1994)